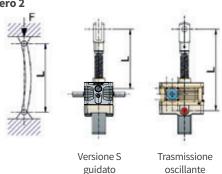



# Resistenza alla flessione delle viti (carico di punta)

#### Eulero 1




# Formula:

$$I = \underbrace{F \times v \times (L \times 2)^2}_{\pi^2 \times E} \qquad \text{allora d} = \sqrt[4]{\frac{I \times 64}{\pi}}$$

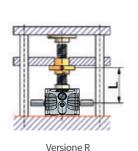
# Esempio:

 $I = \frac{45.000 \text{ N} \times 3 \times (1.320 \text{ mm} \times 2)^2 =}{\pi^2 \times 210.000 \text{ N/mm}^2} = \frac{9,40896^{11} \text{ mm}^4}{2.072.616,924} = 453.965,22 \text{ mm}^4$   $d = \sqrt[4]{\frac{453.965,22 \text{ mm}^4 \times 64}{\pi}} = 55,15 \text{ mm diametro interno minimo} = Z-250 \text{ (Ø interno vit} = 59,6 \text{ mm)}$ 

# Eulero 2



#### Formula:


$$I = \frac{FxvxL^2}{\pi^2xE} \qquad \text{allora d} = \sqrt[4]{\frac{Ix64}{\pi}}$$

#### **Esempio:**

 $I = \frac{45.000 \text{ N} \times 3 \times (1.320 \text{ mm})^2 =}{\pi^2 \times 210.000 \text{ N/mm}^2} = \frac{2,35224^{11} \text{ mm}^4}{2.072.616,924} = 113.491,305 \text{ mm}^4$   $d = \sqrt[4]{\frac{113.491,305 \text{ mm}^4 \times 64}{\pi}} = 38,99 \text{ mm diametro interno minimo}$  = ZE-100 (Ø interno vite = 43,6 mm)

# Eulero 3





guidato

### Formula:

$$I = \frac{F \times v \times (L \times 0,7)^2}{\pi^2 \times E} \quad \text{allora d} = \sqrt[4]{\frac{I \times 64}{\pi}}$$

### Esempio:

 $I = \frac{45.000 \text{ N} \times 3 \times (1.320 \text{ mm} \times 0.7)^2 =}{\pi^2 \times 210.000 \text{ N/mm}^2} = \frac{1,15259^{12} \text{ mm}^4}{2.072.616,924} = 55.610,7396 \text{ mm}^4}$   $d = \sqrt[4]{\frac{55.610,739 \text{ mm}^4 \times 64}{\pi}} = 32,62 \text{ mm diametro interno minimo}$  = ZE-50/Tr50 (Ø interno vit = 39,8 mm)

| Vite trapezoidale Tr<br>Ø interno in mm (min.) |
|------------------------------------------------|
| Vite a sfere KGT<br>Ø interno in mm (min.*)    |

|      | GSZ-2 | ZE-5 | ZE-10 | ZE-25 | ZE-35/50 | ZE-50/<br>Tr50 | ZE-100 | ZE-150 | ZE-200 | ZE-250 | ZE-350 | Z-500  | Z-750  | Z-1000 |
|------|-------|------|-------|-------|----------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
|      | 16x4  | 18x4 | 20x4  | 30x6  | 40x7     | 50x8           | 55x9   | 60x9   | 70x12  | 80x16  | 100x16 | 120x16 | 140x20 | 160x20 |
| 1.)  | 10,9  | 12,9 | 14,9  | 22,1  | 31       | 39,8           | 43,6   | 48,6   | 55,2   | 59,6   | 80,6   | 99,6   | 115    | 135    |
|      | 16    | 16   | 25    | 32    | 40       | -              | 50     | 63     | 80     | 80     | 100    | 125    | 140    | 160    |
| ı.*) | 12,9  | 12,9 | 21,5  | 27,3  | 34,1     | -              | 43,6   | 51,8   | 67     | 67     | 87,4   | 107,8  | 117    | 132,8  |

\*Il Ø min. specifico delle viti a ricircolo, è riportato nel capitolo 2. Con passi lunghi, il Ø interno può anche essere maggiore.



#### Spiegazioni:

I = Momento d'inerzia sup. di 2° grado in mm<sup>4</sup>

F = Max. carico/martinetto in N

L = Lunghezza libera della vite in mm

E = Deformazione dell'acciaio (210.000N/mm²)

v = Fattore di sicurezza (normalmente 3)

d = Diametro interno minimo della vite

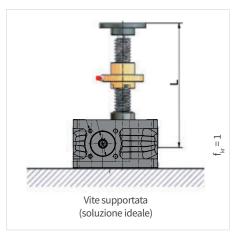
# **Esempio:**

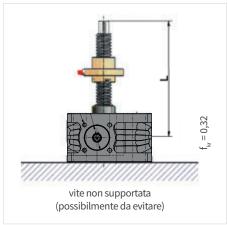
F = 45.000N/Martinetto L = 1320 mm v = 3



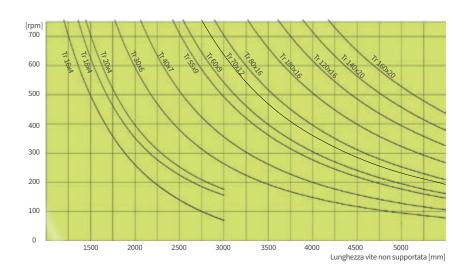
# Velocità critica per la flessione delle viti nei martinetti R

### Numero di giri massimo ammesso della vite


 $n_{zul} = 0.8 \times n_{kr} \times f_{kr}$ 


 $n_{zul}$  numero di giri massimo ammesso della vite (rpm)

n<sub>kr</sub> numero di giri teorico critico (rpm) che porta a oscillazioni di risonanza (vedere diagramma)


 $\mathbf{f}_{kr}$  fattore di correzione che tiene conto del supporto della vite

Il numero di giri di esercizio può raggiungere al massimo 80 % del numero massimo di giri





Numero giri vite =  $\frac{\text{Num. giri in ingres}}{i_{\text{Martinetto}}}$ 



Quando le viti sono particolarmente lunghe nei martinetti (R), si deve calcolare la velocità max ammessa. Per una vite non supportata, rilevare la velocità critica teorica dal grafico, calcolando la lunghezza complessiva della vite. Utilizzare infine la formula del fattore di correzione del supporto vite, per determinare la velocità massima ammessa.

Se il numero di giri massimo ammesso dalla vite è inferiore a quello necessario per l'applicazione, dovrà essere utilizzata una vite più grande oppure una vite a due principi. Anche questa sarà poi da verificare. Nella versione R vi è la possibilità di montare una "vite maggiorata" (vite di taglia immediatamente superiore). Tenete conto che in caso di vite con passo lungo è necessaria anche una coppia più alta in entrata.

# ATTENZIONE:

Viti lunghe, sottili possono stridere nonostante il rispetto del numero di giri critico per la flessione! Utilizzare quindi, un margine di sicurezza adeguato.



# Calcolo del momento torcente [MG] per un singolo martinetto

 $I\,calcoli\,seguenti, servono\,per\,determinare\,la\,coppia\,necessaria\,all'impianto.$ 

Per i martinetti con vite trapezoidale ad un principio, il momento torcente è indicato nei dati tecnici riferiti ad ogni singola grandezza, nel secondo capitolo.

| Formula:                                                                                                                                                                                                                                                                          | Esempio:                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1) Momento torcente: $M_G = \frac{F[kN] \times P[mm]}{2 \times \pi \times \eta_{Martinetto} \times \eta_{Vite} \times I}$                                                                                                                                                         | 1) $M_G = \frac{12 \text{ kN} \times 6 \text{ mm}}{2 \times \pi \times 0.87 \times 0.39 \times 6} = 5.63$ |
| 2) Pot. del motore: $P_M[kW] = \frac{M_G[Nm] \times n [min^{-1}]}{9550}$                                                                                                                                                                                                          | 2) $P_{M} = \frac{5,63 \text{ Nm} \times 1500 \text{ min}^{-1}}{9550} = 0,88 \text{ kW}$                  |
| 3) Fattore di sicurezza :<br>È consigliabile moltiplicare il valore calcolato per un fattore di sicurezza da<br>1,3 a 1,5 (fino a 2 in caso di piccoli martinetti, velocità limitate e soprattutto<br>basse temperature).                                                         | 3) Esempio:<br>0,88 kW x 1,5 = 1,32 kW                                                                    |
| Carico minimo:  Con carichi dinamici limitati,, le perdite a vuoto hanno un effetto proporzionalmente maggiore. Pertanto, calcolare il momento con almeno il 15% del carico nominale del riduttore, anche se il carico effettivo è inferiore (ad esempio Z-50 con almeno 7,5 kN). |                                                                                                           |



#### Spiegazioni:

 $\begin{array}{ll} \mathbf{M}_{_{G}} & \text{Momento torcente [Nm]} \\ \mathbf{F} & \text{Carico dinamico [kN]} \\ \boldsymbol{\eta}_{_{Martinetto}} & \text{Rendimento del riduttore} \\ \boldsymbol{\eta}_{_{Vite}} & \text{Rendimento della vite} \\ \end{array}$ 

P Passo della vite [mm]
i Rapporto di trasmissione

P<sub>M</sub> Potenza richiesta

### **Esempio:**

ZE-25-SN

F = 12 kN (carico dinamico)

 $\eta$ Martinetto = 0,87  $\eta$ Vite = 0,39 i = 6 P = 6

Rendimento dei riduttori  $\,\eta_{\mbox{\scriptsize Martinetto}}\,$  (senza vite)

| i | rpm  | GSZ-2 | ZE-5 | ZE-10 | ZE-25 | ZE-35 | ZE-50 | ZE-100 | ZE-150 | ZE-200 | Z-250 | Z-350 | Z-500 | Z-750 | Z-1000 |
|---|------|-------|------|-------|-------|-------|-------|--------|--------|--------|-------|-------|-------|-------|--------|
| N | 3000 | 0,87  | 0,81 | 0,83  | 0,87  | -     | -     | -      | -      | -      | -     | -     | -     | -     | -      |
| N | 1500 | 0,87  | 0,82 | 0,84  | 0,87  | 0,87  | 0,87  | 0,88   | 0,89   | 0,90   | 0,91  | 0,91  | -     | -     | -      |
| N | 1000 | 0,86  | 0,82 | 0,82  | 0,86  | 0,87  | 0,86  | 0,87   | 0,89   | 0,90   | 0,90  | 0,91  | 0,92  | 0,88  | 0,90   |
| Ν | 750  | 0,86  | 0,82 | 0,84  | 0,85  | 0,86  | 0,85  | 0,87   | 0,88   | 0,90   | 0,90  | 0,91  | 0,92  | 0,88  | 0,90   |
| N | 500  | 0,85  | 0,82 | 0,84  | 0,83  | 0,85  | 0,84  | 0,85   | 0,87   | 0,90   | 0,89  | 0,9   | 0,92  | 0,87  | 0,89   |
| N | 100  | 0,74  | 0,77 | 0,79  | 0,78  | 0,78  | 0,78  | 0,78   | 0,8    | 0,85   | 0,83  | 0,86  | 0,87  | 0,81  | 0,84   |
| L | 3000 | 0,78  | 0,74 | 0,78  | 0,76  | -     | -     | -      | -      | -      | -     | -     | -     | -     | -      |
| L | 1500 | 0,77  | 0,70 | 0,74  | 0,72  | 0,64  | 0,66  | 0,67   | 0,67   | 0,77   | 0,78  | 0,78  | -     | -     | -      |
| L | 1000 | 0,75  | 0,67 | 0,72  | 0,7   | 0,64  | 0,66  | 0,65   | 0,66   | 0,77   | 0,77  | 0,78  | 0,76  | 0,67  | 0,76   |
| L | 750  | 0,74  | 0,65 | 0,7   | 0,68  | 0,64  | 0,66  | 0,65   | 0,65   | 0,77   | 0,76  | 0,78  | 0,75  | 0,66  | 0,76   |
| L | 500  | 0,71  | 0,62 | 0,67  | 0,65  | 0,63  | 0,65  | 0,65   | 0,63   | 0,76   | 0,75  | 0,77  | 0,73  | 0,65  | 0,75   |
| L | 100  | 0,54  | 0,53 | 0,59  | 0,54  | 0,52  | 0,55  | 0,57   | 0,53   | 0,67   | 0,65  | 0,67  | 0,61  | 0,58  | 0,66   |

# Rendimento delle viti $\eta_{\text{\tiny Vite}}$

# calcolati con coefficiente di attrito $\mu$ = 0,11

| Vite Tr ad<br>un principio | 16x4   | 18x4   | 20x4   | 30x6    | 40x7    | 50x8    | 55x9    | 60x9    | 70x12    | 80x16    | 100x16    | 120x16    | 140x20    | 160x20    | Vite a<br>sfere |
|----------------------------|--------|--------|--------|---------|---------|---------|---------|---------|----------|----------|-----------|-----------|-----------|-----------|-----------------|
| Rendimento                 | 0,45   | 0,42   | 0,39   | 0,39    | 0,35    | 0,33    | 0,34    | 0,32    | 0,35     | 0,39     | 0,33      | 0,29      | 0,30      | 0,27      |                 |
| Vite Tr a<br>due principi  | 16x8P4 | 18x8P4 | 20x8P4 | 30x12P6 | 40x14P7 | 50x16P8 | 55x18P9 | 60x18P9 | 70x24P12 | 80x32P16 | 100x32P16 | 120x32P16 | 140x40P20 | 160x40P20 | 0,9             |
| Rendimento                 | 0,62   | 0,59   | 0,56   | 0,56    | 0,53    | 0,50    | 0,51    | 0,48    | 0,52     | 0,56     | 0,50      | 0,45      | 0,47      | 0,44      |                 |



# **Coppie massime ammesse**

# Coppia massima in ingresso

Per avere una durata ottimale, non bisogna eccedere i valori riportati sotto. Con fattori d'utilizzo limitati, potrebbe essere possibile oltrepassare dette soglie.

# Coppia max. in ingresso MR [Nm]

| i | rpm  | GSZ-2 | ZE-5 | ZE-10 | ZE-25 | ZE-35 | ZE-50 | ZE-50/Tr50 | ZE-100 | ZE-150 | ZE-200 | ZE-250 | ZE-350 | Z-500 | Z-750 | Z-1000 |
|---|------|-------|------|-------|-------|-------|-------|------------|--------|--------|--------|--------|--------|-------|-------|--------|
| N | 3000 | 1,2   | 4    | 11    | 17    | -     | -     |            | -      | -      | -      | -      | -      | -     | -     | -      |
| N | 1500 | 1,4   | 4,7  | 13,5  | 18    | 19,8  | 31,5  | 31,5       | 53,4   | 75,1   | 155    | 152    | 230    | -     | -     | -      |
| N | 1000 | 1,5   | 5,6  | 14    | 22    | 20,8  | 36,8  | 36,8       | 60,8   | 77,7   | 155    | 152    | 265    | 408   | 480   | 680    |
| N | 500  | 1,6   | 6,1  | 16,7  | 28    | 24,8  | 46,5  | 46,5       | 75,3   | 95     | 156    | 160    | 350    | 500   | 640   | 960    |
| L | 3000 | 0,5   | 1,4  | 5,7   | 8,5   | -     | -     |            | -      | -      | -      | -      | -      | -     | -     | -      |
| L | 1500 | 0,5   | 1,5  | 7,5   | 10    | 9     | 10,4  | 10,4       | 13,5   | 20,7   | 61     | 41,4   | 85     | -     | -     | -      |
| L | 1000 | 0,5   | 1,8  | 8,7   | 11    | 9,7   | 14,9  | 14,9       | 15,4   | 23,7   | 61     | 47,4   | 100    | 170   | 210   | 450    |
| L | 500  | 0,6   | 2,2  | 10,7  | 14    | 11,1  | 19,2  | 19,2       | 18,9   | 29,4   | 62     | 63,5   | 112    | 220   | 240   | 580    |

Tenere conto dei valori limite in funzione dei fattori meccanici - termici a seconda del fattore d'utilizzo

### Momento torcente nei martinetti in serie

In caso di martinetti montati in serie, il momento torcente può essere decisamente superiore rispetto al momento torcente del singolo martinetto. Viene sollecitato in torsione soltanto l'albero e non la dentatura.

# Momento torcente max vite senza fine [Nm]

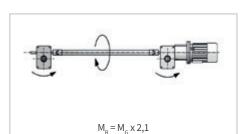
| GSZ-2 | ZE-5 | ZE-10 | ZE-25 | ZE-35 | ZE-50 | ZE-50/Tr50 | ZE-100 | ZE-150 | ZE-200 | ZE-250 | ZE-350 | Z-500 | Z-750 | Z-1000 |
|-------|------|-------|-------|-------|-------|------------|--------|--------|--------|--------|--------|-------|-------|--------|
| 9     | 39   | 57    | 108   | 130   | 260   | 260        | 540    | 540    | 700    | 770    | 1800   | 1940  | 4570  | 4570   |

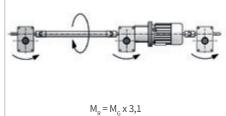


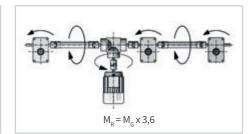
# Calcolo del momento torcente nei sistemi di sollevamento

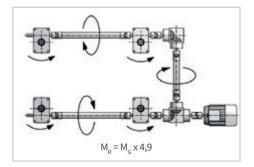
# calcolo approssimativo

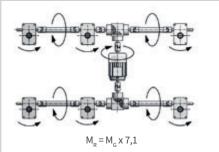
#### Calcolo

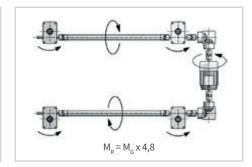

La coppia necessaria per azionare un sistema si sollevamento, è la somma delle coppie dei singoli martinetti aumentata in funzione

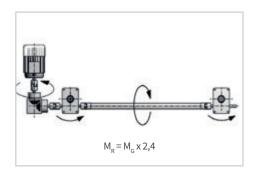

delle perdite di attrito dei componenti di trasmissione quali giunti, alberi di collegamento, rinvii angolari ecc.

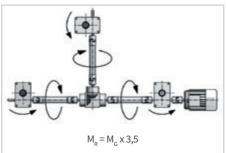

Per semplificare il calcolo, indichiamo i seguenti fattori per le applicazioni più comuni.

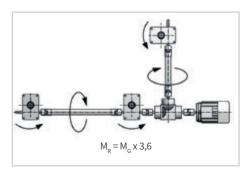




 ${
m M_g}$  – Momento torcente per l'intero impianto  ${
m M_g}$  - Momento torcente per un singolo martinetto  ${
m M_d}$  – Coppia di spunto max. 1,5 x  ${
m M_g}$ 



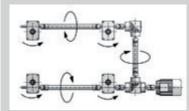









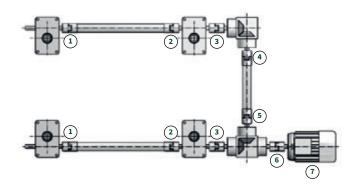



# **ATTENZIONE**

È consigliabile moltiplicare il valore calcolato per un fattore di sicurezza da 1,3 a 1,5 (fino a 2 in caso di piccoli martinetti, velocità limitate e soprattutto basse temperature).

# Esempio (12 kN per ogni martinetto)




 $M_R = M_G \times 4.9 = 5.63 \text{ Nm} \times 4.9 = 27.59 \text{ Nm}$  $\longrightarrow \times \text{ sicurezza } 1.5 = 41.38 \text{ Nm} \times 1.5 = 62.07 \text{ Nm}$ 



# Calcolo del momento torcente nei sistemi di sollevamento

# - calcolo esatto

Nei seguenti esempi vengono considerati per il calcolo anche i rendimenti di alberi di collegamento ( $\eta$  0,95) e rinvii angolari ( $\eta$  0,9).



#### Formula martinetto:

 $\label{eq:momento_g} \text{Momento torcente M}_{\text{G}} = \frac{F\left[kN\right] \times P\left[mm\right]}{2 \times \pi \times \eta_{\text{Martinetto}} \times \eta_{\text{Vite}} \times i}$ 

#### **Rendimento:**

 $\begin{array}{ll} \mbox{Alberi di collegamento:} & \eta \mbox{ 0,95} \\ \mbox{Rinvii angolari:} & \eta \mbox{ 0,90} \end{array}$ 

## Esempio:

| 1) | MG = 12kN x 6mm                   | = 5,63               |
|----|-----------------------------------|----------------------|
|    | 2 x π x 0,87 x 0,39               | x 6                  |
| 2) | 5,63 Nm                           | = 5,93 Nm            |
|    | 0,95                              | <del></del>          |
|    | (rendimento dell'albero di colleg | gamento)             |
| 3) | 5,63 Nm + 5,93 Nm                 | = 11,56 Nm           |
| 4) | 11,56 Nm                          | = 12,84 Nm           |
|    | 0,9                               |                      |
|    | (rendimento del rinvio angolare)  |                      |
| 5) | 12,84 Nm                          | = 13,52 Nm           |
|    | 0,95                              |                      |
| 6) | (11,56 Nm + 13,52 Nm)/0,          | ,9 = <b>27,87 Nm</b> |
| 7) | 27,87 Nm x 1,5                    | = 41,8 Nm            |
| 7) | 27,87 Nm x 1,5                    | = 41,8 Nm            |

# Z-25-SN

F = 12 kN (carico dinamico per martinetto)  $\eta_{\text{Martinetto}} = 0,87$   $\eta_{\text{Vite}} = 0,39$ i = 6 P = 6

11,56 Nm x 1,5 = 17,34 Nm (KSZ-H-25-L va bene (vedere Capitolo 5)

41,8 Nm

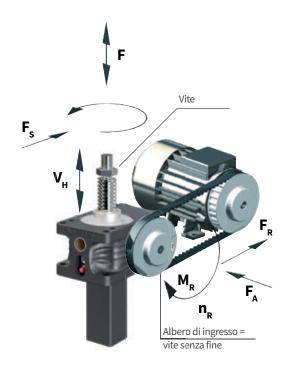
(è necessario KSZ-H-35-T - vedere Capitolo 5)

# Scelta del motore: 132M-P4-7,5 kW (50 Nm)

(motori vedere capitolo 3)

# ATTENZIONE

È consigliabile moltiplicare il valore calcolato per un fattore di sicurezza da 1,3 a 1,5 (fino a 2 in caso di piccoli martinetti, velocità limitate e soprattutto basse temperature).




# Carichi radiali ammessi

### Forze laterali sulla vite

Le forze laterali massime ammesse sono indicate nella tabella sotto. Fondamentalmente le forze laterali devono essere supportate da guide esterne. Il supporto vite del martinetto ha solo una funzione secondaria. Le forze massime laterali effettive devono essere inferiori ai valori indicati in tabella!

ATTENZIONE: SONO AMMESSE SOLO QUELLE STATICHE!



# Forza laterale massima F<sub>s</sub> [N] (solo statica)

### lunghezza libera della vite in mm

| ZE/Z | 100   | 200   | 300   | 400   | 500    | 600   | 700   | 800    | 900   | 1000  | 1200  | 1500  | 2000  | 2500  | 3000 |
|------|-------|-------|-------|-------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|------|
|      | 360   | 160   | 100   | 70    | 55     | 45    | 38    | 32     | 28    | 25    | 20    | 18    | 12    | -     | -    |
| 10   | 600   | 280   | 180   | 130   | 100    | 80    | 70    | 60     | 50    | 47    | 40    | 30    | 20    | 15    | -    |
| 25   | 900   | 470   | 300   | 240   | 180    | 150   | 130   | 110    | 100   | 90    | 70    | 60    | 45    | 35    | 30   |
| 35   | 1300  | 700   | 450   | 360   | 270    | 220   | 190   | 160    | 150   | 130   | 100   | 90    | 60    | 50    | 40   |
| 50   | 3000  | 2000  | 1300  | 900   | 700    | 600   | 500   | 420    | 380   | 330   | 280   | 230   | 160   | 130   | 100  |
| 100  | 5000  | 4000  | 3000  | 2300  | 1800   | 1500  | 1300  | 1100   | 950   | 850   | 700   | 600   | 400   | 350   | 250  |
| 150  | 5500  | 5000  | 3900  | 2800  | 2300   | 1800  | 1500  | 1300   | 1200  | 1000  | 850   | 750   | 500   | 400   | 350  |
| 200  | 7500  | 7200  | 5400  | 4000  | 3200   | 2500  | 2100  | 1800   | 1700  | 1500  | 1200  | 1050  | 700   | 600   | 500  |
| 250  | 9000  | 9000  | 6500  | 4900  | 3800   | 3000  | 2500  | 2200   | 2000  | 1900  | 1450  | 1250  | 900   | 760   | 660  |
| 350  | 15000 | 13000 | 12000 | 10000 | 8800   | 7000  | 6000  | 5500   | 4800  | 4300  | 3500  | 3000  | 2000  | 1600  | 1400 |
| 500  | 29000 | 29000 | 29000 | 29000 | 24000  | 20000 | 17000 | 15000  | 15000 | 14000 | 12000 | 9000  | 7000  | 5600  | 4900 |
| 750  | 34800 | 34800 | 34800 | 34800 | 34800  | 28800 | 24000 | 20400  | 18000 | 16800 | 14400 | 10800 | 8400  | 6720  | 5880 |
| 1000 | 46000 | 46000 | 39000 | 36000 | 320000 | 30000 | 25000 | 290000 | 25000 | 23500 | 20000 | 17000 | 12000 | 10000 | 8000 |

# Sollecitazione radiale dell'albero di ingresso

In caso di utilizzo di dispositivi a catena o cinghia, non devono essere superate le forze radiali indicate sotto.

# max. sollecitazione radiale dell'albero di ingresso $\boldsymbol{F}_{\!_{R}}[N]$

|         | ZE-5 | ZE-10 | ZE-25 | ZE-35 | ZE-50 | ZE-100 | ZE-150 | ZE-200 | ZE-250 | ZE-350 | Z-500 | Z-750 | Z-1000 |
|---------|------|-------|-------|-------|-------|--------|--------|--------|--------|--------|-------|-------|--------|
| FR max. | 110  | 190   | 260   | 260   | 420   | 650    | 670    | 1000   | 1100   | 1400   | 2600  | 3000  | 3400   |



Definizioni di sollecitazione o carico:

F - Carico in trazione e/o spinta

F<sub>s</sub> - Carico laterale della vite

v. - Velocità della vite

(o della chiocciola in caso di versione R)

F<sub>A</sub> - Sollecitazione assiale dell'albero di ingresso

- Sollecitazione radiale dell'albero di ingresso

M<sub>R</sub> - Momento torcente in serie

n - Numero giri in entrata



# Determinazione delle lunghezze - vite e tubo di protezione

#### Risparmiare tempo

# Approfittate del configuratore online ZIMM per determinare facilmente e comodamente l'estensione della vite e del tubo di protezione necessari. In questo modo è possibile stabilire velocemente le quote di montaggio del martinetto.

#### In linea generale

In funzione della versione e degli accessori previsti, la vite (anche il tubo di protezione nella versione S) sarà necessariamente più lunga. I valori risultanti, sono il min richiesto dai rispettivi ingombri. Qualora vi siano esigenze particolari, vi invitiamo a contattare i nostri progettisti.

Corsa + lunghezza base (+ lunghezza necessaria per accessori e varianti)

## **Esempio S:**

### ZE-25-SN, Corsa 250 mm:

- Soffietto ZE-25-FB-300 (ZD=70mm)
- Terminale a flangia BF (quindi soffietto senza anello di fissaggio)
- Dispositivo antirotazione VS
- Finecorsa ESSET

Lunghezza vite Tr:

| 250<br>Corsa                      | +        | 180<br>Lunghezza base | +              | 44<br>Soffietto<br>(70 - 26 = 44) | + | 45<br>Finecorsa +<br>Dispositivo antirotazione | = | 519 mm<br>Lunghezza vite                  |
|-----------------------------------|----------|-----------------------|----------------|-----------------------------------|---|------------------------------------------------|---|-------------------------------------------|
| Lunghezza tubo di<br>250<br>Corsa | protezio | 5                     | i3<br>zza base | +                                 |   | 72<br>Finecorsa +<br>tivo antirotazione        | = | 375 mm<br>Lunghezza tubo di<br>protezione |

### **Esempio R:**

# ZE-25-RN, Corsa 250 mm:

- Vite con codolo (per terminale a flangia con cuscinetto a sfere GLP)
- Soffietto ZE-25-FB-300 (ZD=70mm) inferiore e superiore
- Chiocciola Duplex DM

Lunghezza vite Tr:

Per calcolare la lunghezza degli alberi di collegamento consultare il Capitolo 4.